Конденсаторы — это неизбежное “зло”, которое вынуждены, стиснув зубы, терпеть аудиофилы. Многие типы конденсаторов “плохо звучат”.
Например, пресловутая керамика Н90 — из-за пьезоэлектрического эффекта. А как другие типы, скажем, пленочные? Тут можно написать целую поэму. Но можно ли строить частотнозависимые цепи без них, только с помощью дросселей (индуктивностей)? Оказывается, можно. И не только можно, но и нужно!
Мои старые акустические колонки постройки до 1980 г. изредка подвергались доработкам. Из-за порванного диффузора головка 4ГД8-Е была заменена на 5ГДШ5-4 (это почти одно и то же), а заодно и вторая. Головки 25ГД-26 были включены “дублетом” (“лицом к лицу”) (1). И рамку с защитной радиотканью пришлось окончательно снять. А вот фильтры оставались прежние.
На низких частотах — второго порядка, на средних и высоких — третьего. И АЧХ по звуковому давлению была неплохой. Но звучание…! Не чувствовалось разницы между разными усилителями, а не то что между проводами из меди и серебра.
Настало время заменить фильтры. А какие выбрать? За эти годы появилась масса противоречивой информации. Аудиофилы особенно ругали конденсаторы. Сначала советовали делать фильтры не выше первого порядка, потом отказывались делать такие фильтры и строили четвертого, а кое-кто дошел и до шестого порядка.
Анализировали групповое время задержки (ГВЗ) и ФЧХ, двигали ВЧ-излучатель вперед, назад… и даже в сторону. Полнейший “разброд”: от однополосных АС на 4А28 до 4-5-6-полосных… и т.п. Как-то, разгребая распечатки материалов из Интернета, наткнулся на статью А. Юренина о последовательных кроссоверах.
Там автор говорит, что они появились в 1969 г. Но сами схемы я встречал еще в 1961 г. (2). где автор ссыпается на немецкий журнал по технике связи за 1959 г. Суть дела не в этом, а в том. что Юренин привел схему кроссовера для акустики, в которой нет конденсаторов (схема запатентована и используется в производимых фирмой Acoustic Reality акустических системах).
Вот эта схема (рис.1). Она очень проста. Так как мои АС тоже трехполосные, я решил начать переделку фильтров именно с этой схемы. Проведем небольшой анализ. Нарисуем простейший последовательный кроссовер, “первого порядка” так, как его принято изображать (рис.2). Здесь присутствует конденсатор С1. а на рис.1 такого конденсатора нет Но зато там добавлено звено L1-R1. представляющее собой для СЧ- и НЧ-излучателей фильтр нижних частот.
На L1 выделяются верхние частоты и попадают в ВЧ-излучатель BA1. L2-Rваз — это еще один фильтр нижних частот, которые выделяются в ВАЗ, а выделяющиеся на L2 средние частоты попадают в СЧ-излучатель ВА2. Вот и вся премудрость! Главное, чтобы сопротивление излучателей было чисто активным.
Но излучатели (головки) электродинамического типа не могут иметь чисто активного сопротивления, поскольку у них имеется катушка с железным сердечником. Повторение схемы по рис.1 приводит к печальному результату: средних частот явно мало из-за индуктивности головки ВАЗ. Займемся НЧ-излучателем.
Для проведения этой работы понадобятся генератор звуковых частот с Uвых.max = 10В, электронный вольтметр (например, B3-38) или мультиметр. Известно, что для выравнивания входного сопротивления динамика в попосе частот требуется применение цепи Цобеля и последовательного контура на частоте резонанса [3].
Но на НЧ резонансный контур почти никогда не ставится из-за своей громоздкости и отдаленности резонанса динамика от частот раздела НЧ-СЧ/ВЧ (0.3.. .3 кГц). Для выбора R1 иС1 (рис.3) нужно знать сопротивление динамика ВА по постоянному току Re: и индуктивность его катушки Lк.
Рекомендуются такие формулы:
Re моих двух последовательно включенных динамиков составляет 7.2 Ом. Таким образом, R1=9 Ом, а С1 =?. т.к. Lк неизвестна. Чтобы определить Lк, нужно измерить сопротивление динамика на разных частотах.
Схема измерения проста и показана на рис.4. Результаты сведены в табл.1. Поделив показания вольтметра PV1 в милливольтах на 10 (вторая строка таблицы), получаем сопротивление Zва в омах (третья строка).
Из табл.1 находим Fz— частоту, на которой индуктивное и активное сопротивления динамика примерно равны, т.е. частоту, где
Некоторые авторы предлагают брать R1=Rе. Я взял R1=8 Ом, тогда С1 =30 мкФ. Можно использовать бумажный конденсатор типа МБГО 30,0×160 В. В нижней строке табл.1 приведены результаты измерения сопротивления НЧ-динамика с RC- цепью Цобеля (8.2 Ом, 30 мкФ). Неплохая, однако, получилась компенсация! Теперь НЧ излучатель можно включить в схему по рис.1. Провала на средних частотах не будет.
СЧ-излучатель 5ГДШ5-4 имеет Rе=3.5 Ом и отдачу почти в 3 раза большую, чем НЧ-головка, и здесь требуется выравнивание отдачи. Проделав измерения по определению Lк для этой головки, найдем частоту Fz. с которой начинает расти Z.
Это примерно 4…5 кГц. Для выравнивания отдачи целесообразно включить последовательный резистор, как показано на рис.5. не используя цепь Цобеля. Образуется делитель с коэффициентом передачи на НЧ Кп:
Частота Fz такой цепи увеличится в 4 раза и составит 16…20 кГц, так что цепь Цобеля и не понадобится. А входное сопротивление доведем до приемлемой величины, включив параллельный резистор R1 сопротивлением 15 Ом, как показано на рис.6.
При этом эквивалентное сопротивление Z составит:
Это позволяет включить СЧ-иэлучатель в схему на рис.1. Включение последовательного резистора с сопротивлением, почти в 4 раза большим, чем Rе, уменьшает нелинейные искажения СЧ-головки, приближая эквивалентное сопротивление генератора к источнику тока.
Варьируя R1 и R2 (рис.6), можно точно подобрать коэффициент деления, нужный для одинаковой отдачи СЧ- и НЧ-головок. Очень важно отметить, что на средних частотах действительно нет конденсаторов (кроме С1 в НЧ-звене, рис.З), а частоту раздела НЧ-СЧ можно сдвигать, изменяя только одну индуктивность —L2 на рис. 1.
ВЧ-излучатель — 6ГД11. Его Re=5,6 ОМ. Zва =7,3 ОМ на частоте 5 кГц и далее растет до 12,5 Ом на частоте 20 кГц. Чаще всего цель Цобеля не ставят, т.к.частота раздела — 4…8 кГц, а рост Zва с увеличением частоты незначительно сказывается на звучании.
Выбор частот раздела НЧ-СЧ и СЧ-ВЧ производится из следующих соображений. Так как использованы фильтры первого порядка, частоты разделов должны отстоять от резонанса соответствующего излучателя не менее, чем на 2 октавы [3], т.е. fнч-сч>600 Гц (fpeз~150 Гц у 5ГДШ5-4), а fсч-вч > 6 кГц (fрез = 1,5 кГц у 6ГД11).
Для лучшей защиты ВЧ-излучателя от НЧ-колебаний пришлось поставить последовательно с излучателем 6ГД11 дополнительный конденсатор емкостью 2.2 мкФ (К73-16, Umax=160 В). Без него на повышенной громкости появлялись какие-то призвуки.
В СЧ-излучателе я применил открытое оформление (бокс без задней стенки размерами 220x140x75 мм). Теперь его можно легко разворачивать под нужным углом к слушателю. Заклеил окна диффузородержателя (корзины) хлопчатобумажным ватином и довел таким образом полную добротность до 0,65. Окончательная схема громкоговорителя приведена на рис.7а.
Конструктивно катушка L2 выполнена бескаркасной и имеет сопротивление постоянному току RL2=0.4 ОМ. При желании индуктивность катушки можно легко изменять (увеличивать), вдвигая в нее ферритовый сердечник (кусок магнитной антенны от радиоприемника “Океан”) диаметр 10 мм., длина 100 мм. При этом частота fнч-сч меняется в 2.4 раза. Катушка L1 на мотана на не замкнутом сердечнике ШЛ40х10 (одна скоба), RL1=0,4 Ом.
Входное сопротивление Z громкоговорителя с таким фильтром на разных частотах представлено в табл.2. Из таблицы видно, что Z3 значительно меняется: на частоте 2,5 кГц — 5.6 Ом, а на 20 кГц — 11 Ом. Для выравнивания Z на этих частотах ко входу фильтра нужно подключить RC-целочку (рис.76).
Тогда Z3 изменяется на этих частотах так, как показано в последней строке табл.2. Общее изменение Z во всей полосе от 80 Гц до 20 кГц не выходит за пределы 4,4…6 Ом и только на частоте 3150 Гц составляет 6,3 Ом. Такая ровная Z-характеристика дает возможность сравнивать усилители с разным выходным сопротивлением (ламповые и транзисторные).
Прослушав АС, я с удовлетворением отметил прекрасное звучание своего лампового “однотактника”, заметно лучшее, чем звучание транзисторного УМЗЧ, тоже, впрочем, неплохое. АЧХ с помощью измерительного микрофона я. конечно, проверил, насколько это возможно в жилой комнате.
А вот ФЧХ и ГВЗ измерять не стал. Просто послушал “звук” и решил, что еще лет на 10 мне этих фильтров хватит. А может, фирменные АС резко подешевеют, тогда и куплю себе что-либо, лучше звучащее, без конденсаторов.
Читайте также статьи: Конденсаторы для акустических систем
Здравствуйте. Сможете помочь рассчитать фильтры для трёх полосной акустики.? С формулами беда)))))) если да. Вышлю названия динамиков. Благодарю!!!
Уважаемый Автор. Можно попрсить Вас рассчитать схему этого фильтра не для двух НЧ динамиков, а для одного 4-х омного 15ГД-17. Остальные, как у Вас. Спасибо.