При ремонте и налаживании схем на цифровых микросхемах может быть очень полезен генератор логических импульсов. В общем, это генератор прямоугольных импульсов, частоту которых можно регулировать в широких пределах.
Но нужно чтобы размах этих импульсов на выходе генератора соответствовал логическим уровням в той схеме, на которую их нужно подавать.
Если с ТТЛ все ясно, то величина напряжения логической единицы для МОП и КМОП логики может быть практически любой во всем допустимом напряжении питания микросхемы, определяясь величиной напряжения питания.
Ведь, практически, логическая единица у КМОП-микросхемы, это немного меньше напряжения питания. А напряжение питания у многих КМОП микросхем может быть от 3 до 18V, соответственно и напряжение логической единицы будет в широких пределах для схем с разным напряжением питания.
Поэтому, лабораторный генератор прямоугольных логических импульсов должен позволять регулировать не только их частоту, но и амплитуду согласно конкретному напряжению питания, которое присутствует в ремонтируемой или налаживаемой схеме. Если с частотой все относительно понятно, то с амплитудой возникают некоторые вопросы, в частности с тем, что для «чистоты эксперимента» нужно регулировать не столько амплитуду, сколько уровни нуля и единицы.
Проще всего это решить, если генератор прямоугольных импульсов сделать по схеме
мультивибратора на КМОП-микро- схеме, например, К561ЛЕ5, а амплитуду регулировать не при помощи какого-то регулятора выходного напряжения этого мультивибратора, а путем изменения
напряжения питания самой микросхемы, на которой сделан этот мультивибратор. То есть, например, в схеме, на которую мы собирается подавать импульсы с этого генератора, напряжение питания 6V, то мы прост выставляем напряжение питания микросхемы генератора точно таким же 6V, и на выходе получаем совершенно «правильные» логические импульсы, именно такие, как они должны быть при 6-вольтом питании.
Схема показана на рисунке. На элементах D1.1 и D1.2 микросхемы D1 собран мультивибратор. Он генерирует импульсы частотой от 1 Hz до 10 kHz в четырех диапазонах, 1-10Hz, 10-100Hz, 100-1000Hz и 1-10kHz. Диапазоны переключаются переключателем S1, который переключает конденсаторы С1-С4, емкостной составляющей частотозадающей цепи. А плавно частота внутри каждого диапазона регулируется переменным резистором R2. Ведь частота импульсов, генерируемых мультивибратором, построенным по такой схеме зависит от сопротивления между входом и выходом элемента D1.1 и емкости между входом D1.1 и выходом D1.2.
Емкость меняется ступенчато при помощи переключателя S1, а сопротивление регулируется плавно при помощи переменного резистора R2. Два других элемента микросхемы D1.3 и D1.4 служат только для исключения влияния выходных цепей на работу мультивибратора (ну, нужно же было нейти им применение). Амплитуда импульсов, а вернее, логический уровень, регулируется при помощи регулируемого стабилизатора напряжения питания на микросхеме А1.
При помощи этого стабилизатора напряжение питания микросхемы D1 регулируется в пределах от 3 до 16 V. Соответственно, и параметры выходного импульсного сигнала будут соответствовать логическим уровням при данном напряжении питания. Налаживание заключается в градуировке шкал сделанных вокруг переменных резисторов R2 и R4. Желательно чтобы эти резисторы были с линейным законом регулировки сопротивления.
При работе с прибором следует учесть, что с изменением логического уровня (напряжения питания микросхемы) несколько меняется и частота выходных импульсов.Монтаж выполнен на печатной плате, схема которой показана на рисунке выше. На рисунке печатных проводников дорожки показаны схематически, реально они шире. Сначала несмываемым маркером рисуют точки пайки, а потом их соединяют между собой линиями.
Как точки пайки, так и линии могут быть на много шире, чем на этом рисунке, важно только, чтобы они не сливались между собой. После, плату травят в растворе хлорного железа.Промывают бензином или спиртом чтобы смыть краску несмываемого маркера. После высыхания сверлят отверстия и переходят в монтажу.