При конструировании ламповых усилителей мощности звуковой частоты (УМЗЧ) используют несколько классов (режимов) работы ламп. На рис.1 а изображены графики работы лампы в классе А. В данном режиме рабочая точка (Рm) лампы, соответствующая напряжению смещения на управляющей сетке лампы Uco располагается на середине прямолинейного участка вольтамперной характеристики.
Как можно видеть из рисунка, лампа постоянно находится в открытом состоянии. Чем выше начальный ток анода Iao, тем ниже КПД каскада, работающего в классе А. Однако искажения, вносимые каскадом при этом, будут минимальны.
[info]Компания Lighttechnics Production предлагает услуги технического комплексного обслуживания мероприятий. Предлагается аренда разнообразного звукового оборудования, сценические конструкции и многое другое. Подробно познакомиться с предложением вы сможете на сайте lighttechnics.ru где представлена вся информация о работе этой компании.[/info]
Класс А предпочтителен для использования во входных усилительных каскадах, имеющих достаточно высокий коэффициент усиления. В выходных каскадах усилителя звука вопрос уменьшения потребляемой мощности становится актуальным.
Смещение рабочей точки лампы за пределы линейного участка рабочей характеристики позволяет уменьшить начальный ток анода и, как следствие, увеличить КПД каскада (рис.1 б). Лампа переходит в класс В. Однако при этом сильно увеличиваются нелинейные искажения, поскольку рабочую точку устанавливают в начале линейного участка характеристики, и усиливаются лишь положительные полуволны входного сигнала, а отрицательные срезаются.
Для устранения нелинейных искажений каскадов, работающих в классе В, используют мостовую (или, точнее, полумостовую) схему (рис.2). С выхода каскада на VL1, работающего в классе А, получают противофазные сигналы, которые усиливаются по мощности лампами VL2, VL3 двухтактного выходного каскада в классе В. Иногда, для снижения искажений, лампы VL2, VL3 включают в режим АВ промежуточный между классами А и В.
Усиленные сигналы складываются в выходном трансформаторе Т1, который также согласует высокое выходное сопротивление ламп с низким сопротивлением громкоговорителя ВА1. От качества изготовления Т1 зависит равномерность АЧХ выходного сигнала. Практически все конструкции УМЗЧ, использующие “суммирующий” трансформатор, имеют достаточно существенную величину вносимых искажений.
Происходит это по разным причинам, и прежде всего, из-за неидеального симметрирования первичной обмотки, вызывающего постоянное подмагничивание сердечника трансформатора. Дня выхода из данной ситуации следует воспользоваться старым, проверенным на практике правилом: если идеала нельзя добиться от него нужно отказаться. В данном случае придется отказаться от использования трансформаторных схем. Чтобы исключить из схемы трансформатор, выходной каскад собирается по мостовой схеме (рис.3) [1].
Выходное сопротивление подобного моста — 250. ..350 Ом и зависит от типа применяемых ламп. В “горизонталь” моста включают нагрузку (громкоговоритель), а в “вертикаль” — источник питания. При балансе моста напряжение на нагрузке равно нулю. Если на вход моста подают сигнал с фазами, показанными на рисунке, происходит разбаланс моста, и через нагрузку течет ток. Его форма точно соответствует форме входного сигнала. Таким образом, возможна работа выходного каскада УМЗЧ без постоянной составляющей в нагрузке.
Кроме того, мостовая схема обеспечивает компенсацию четных гармоник искажений выходного сигнала и подавляет сетевой фон. Неравномерность АЧХ мостового УМЗЧ очень низка, и практически не имеет характерного завала в области НЧ, специфичного для трансформаторных УМЗЧ. Данное положительное качество мостовых УМЗЧ позволяет использовать их в качестве HI-END-сабвуферов в составе домашних кинотеатров.
На рис.4 и 5 изображена схема высококачественного мостового HI-END УМЗЧ. Номинальная выходная мощность усилителя в полосе частот 20…24000 Гц равна 10 Вт (пиковая 15 Вт). Коэффициент нелинейных искажений не превышает 0.8%, уровень фона 50 Гц 70 дБ (для уменьшения фона накал ламп запитывают от источника постоянного напряжения). На VL1 собран предварительный малошумящий усилитель, с выхода которого сигнал поступает на регуляторы тембра.
Далее каскад на VL2 формирует противофазные сигналы. Драйверная лампа VL3 управляет выходным мостом, собранным на VL4, VL5. К XS2 подключают высокоомную (300 Ом), а к XS3 — низкоомную (8 Ом) нагрузки. Включение усилителя без нагрузки не допускается! Т1 служит только для согласования сопротивлений выходного каскада и низкоомной нагрузки, и требования к его конструкции не столь критичны. Вентилятор М1 обдувает лампы, осуществляя их принудительное охлаждение (при этом существенно снижается дрейф рабочих точек VL2…VL5).
Собирается УМЗЧ в дюралюминиевом корпусе с отверстиями для вентиляции. Вместо малогабаритных ламп VL1…VL3 можно применить 6Ж1П и 6Н1П. Т1 и Т2 — тороидальные. Сечение кольца Т1 — 40×40 мм, диаметр — 50 мм. Обмотка I имеет 400 витков провода ПЭВТЛ диаметр 0,41 мм, а обмотка II — 80 витков того же провода диаметр 0,8 мм. Сечение кольца —Т2 60×30 мм, диаметр —120 мм. Обмотка I имеет 700 витков провода ПЭВТЛ диаметр 0,41 мм, обмотка II — 790 витков провода ПЭВТЛ диаметр 0,27 мм, а обмотка III — 18 витков провода ПЭВТЛ диаметр 1,8 мм.
Фильтрующие дроссели L1 и L2 также намотаны на тороидальных сердечниках сечением 40×10 мм и диаметром 40…50 мм. Они имеют 300 витков провода ПЭВТЛ диаметр 0,27 мм (L1) и 100 витков провода ПЭВТЛ диаметр 1,8 мм (L2). Налаживают ламповый усилитель по следующей методике. Снимают VL4, VL5 с панелек, и включают питание. Измеряют питающие напряжения и напряжения на VL1, VL2. Подают на вход усилителя синусоидальный сигнал амплитудой 0,25 В и частотой 1 кГц. Убеждаются с помощью осциллографа в наличии парафазных неискаженных сигналов в точках А и В.
Устанавливают на место VL4, VL5, а к XS3 подключают эквивалент нагрузки — резистор сопротивлением 8 Ом с рассеиваемой мощностью не менее 20 Вт. Включают усилитель и измеряют напряжения на лампах VL3…VL5. Они должны соответствовать указанным на рис.5. Контролируя осциллографом сигнал на выходе, убеждаются в том, что он имеет достаточный размах по амплитуде и не искажается. В заключение желательно снять с помощью низкочастотного ГКЧ АЧХ УМЗЧ, и измерителем нелинейных искажений проконтролировать коэффициент гармоник. Полученные данные должны соответствовать описанным.